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IV. ConcLusioNs

The effect of the width and the dielectric material of the non-
magnetic gap on the operation of latching stripline circulators has
been studied. Numerical results show that in the typical range of
design the external normalized radius and the bandwidth are slightly
affected by the gapwidth. Generally speaking the bandwidth de-
creases by changing the dielectric constant of the ceramic ring from
that of the ferrite. The normalized external radius decreases by
decreasing the dielectric constant of the ceramic ring. The band-
width is not sensitive to the variations in e;/eg up to the value 2.
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Curved-Rim Open Resonators
A. CONSORTINI

Abstract—Field configurations and resonant frequencies are
analytically derived for some low-loss modes of a‘Fabry-Perot
(FP) open resonator having curved rims along the edges. Since the
low-loss modes are limited by a caustic surface, the problem can
be simply treated by neglecting the diffraction due to the finite
dimensions of the mirrors. The results are compared with those
obtained by numerically solving the integral equation of the open
cavity.

I. InTRODUCTION

As is well known, the losses of a class of open resonators are so
low that field configurations and resonant frequencies can be ob-
tained, with a good approximation, without taking into account the
effects of the diffraction due to the finite dimensions of the mirrors.
In general, this class includes those open cavities whose low-loss
modes are limited by a caustic surface [1]. Typical examples are
the curved stable resonators [1], [2], the so-called flat-roof reso-
nator [37), the quasi-corner resonator [47], and some types of rimmed
resonators [5], [6].

Another type of cavity, where the low-order modes are expected
to be represented by fields bounded by a caustic surface, is that
represented in Fig. 1 constituted by a Fabry—Perot (FP) resonator
having curved rims along the edges. In the present short paper,
mode configuration and resonances of it are determined by neglecting
the diffractional effects.

As usual, the problem is reduced to the investigation of the in-
finite-strip case. The curved-rim sections are assumed to join the
flat portion of the mirrors continuously (Fig. 1).

I1. TuEORY

With reference to rectangular coordinates z,y,z with the origin at
the center of the cavity, Fig. 1, the problem is to find a solution of
the wave equation, for instance, the electric field E parallel to y,
which satisfies the boundary conditions on the mirrors. We will
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proceed by choosing two different solutions satisfying the boundary
conditions in the central region ABCD, and in a lateral region,
BEFC, respectively, and then by matching them along an appropri-
ate line [3], (4], [6].

In the central portion of the cavity, a solution of the wave equa-
tion, satisfying the boundary conditions on the walls, can be written

cos (k.2)
E, = cos k.2 { 1)
sin (k.z)
where
kd = qr 2)

and ¢ is a very large odd integer. For low-order modes, which we
are interested in, k. is of the order of magnitude of the free-space
wavenumber k, and therefore k, < k.. Moreover, k.a is of the order
of a multiple of 7/2. It is to be expected that the presence of the
rim alters the value of k,, but not its order of magnitude.

The factors cos (k.,x) and sin (k.x) of (1) correspond to even and
odd modes, respectively.

The solution E; of the wave equation in the region BEFC, satisfy-
ing the boundary conditions at BE and FC (and having a caustic
surface in this region ), can be looked for in the form of two Gaussian
bearas with the axis coincident with BC, propagating in the direc-
tions 2 and —z, respectively, and having BE and CF as wavefronts.
In order to obtain low-loss modes it is necessary to utilize the
Gaussian beams of lowest order, so that E; can be written as

k 2
E =A %exp (~r2/w?) cos [kz - + _r] (3)
w 2R

where
r=2—a 4)
RS TN WL 5)

Moreover 7],

P [1 + (—)‘z—ﬂm, x = 2x/k (6)

1r'w02
e \2
R=z|i1+<—);z—)j| (7

& = arctan <—)ﬁ—) (8)

7rw¢.2

and

Finally, wo is a constant (the beam waist) which is determined by
means of the condition that the mirror surfaces coincide with two

wavefronts. By requiring that for | z| = d/2 the radius of curvature
| R | of the wavefront be equal to the radius p of the rim, one obtains
from (7)
d (2 1/2
e=- (2 1),
Wo' % ( d ) (9)

Recall that the existence of Gaussian beams requires we >> A. It
appears from this equation that the caustic surface exists only if
p > d/2, as is well known from the theory of curved-mirror open
rescnators.
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Tt is also well known that in the region r < w the field of a Gaus-
sian beam presents an oscillating behavior; the field becomes vanish-
ingly small when r > w. The line r(2) = w(2) represents the caustic.

The two fields E. and E; must be matched along the line separat-
ing the two regions of validity of the two solutions (1) and (3).
Note that since the plane and curved mirrors are tangent to one
another, the two regions are not sharply limited by the line z = a.
Therefore, there is no physical reason for the matching to occur
along BC, as would happen if the mirrors were not tangent to one
another. The line of the matching, of equation r = r(2), is an
unknown of our problem.

The matching requires the following conditions to be fulfilled
along the line ro(2):

[Ec]raro(z) = [El]r=ro(z) (10)
oE, K

or r=r¢(2) or r=ro(2)
dE, oE

02 |r=ro(2) 92 Jr=r()

In general, these conditions cannot be satisfied everywhere along
the line of the matching with the simple expressions (1) and (3)
for E, and E, respectively. As an approximation we will require
that they are satisfied near the = axis. This is equivalent to approxi-
mating the line » = ro(2) with the straight line » = ry(z = 0) = 7.
In the same approximation, conditions (10) and (12) obviously
coincide. In this case the quantities ®, w, and R appearing in (3)
can be replaced by their approximate expressions valid for small
values of z. For small values of z the matching conditions, on account
of (1) and (3), give for even modes

o8 [ks(a + r0)]
4= exp [ —re/we] (13)

ks tan [ky(a + ro)] = 3—% (14)
0

2 7‘02
k=kz|:1 +k32w02<1 _&‘E)]’ , ro < we

and analogous expressions for odd modes.

Equation (15) represents the resonance condition. It has been
obtained from (12) by also recalling that we > X\ and, consequently,
by neglecting terms of higher order with respect to the last term in
square parenthesis.

A comparison of (15) and (5) yields

W=i1_ﬁ)
we? we?

After some manipulation, by also using (16), (14) can be replaced
by

(15)

(16)

7‘02
cos? [ke(a +10)] =1 — —.
Wy’

(17)

Since k.a is of the order of a multiple of 7/2, it appears from (17)
that 7o =~ wo. The solution of this equation, on account also of (14),
can be looked for in the form:

heatro) = (m+1)Z(1~e), m=02- (18)

with 0 < ¢ < 1. For odd modes one derives the same equation, but
with m odd. Equation (18) introduced into (16) allows us to derive
an approximate value r’ of o, by neglecting ¢ with respect to unity
and ry with respect to the mirror aperture a:

= 1_(m+1)21r‘*<ﬂo>2 172
co 16 al| "

This result implies that the second term in brackets be much
smaller than unity, so that our results will be valid for low values
of m. If one introduces (19) into (15) it appears that in this approxi~
mation the resonance frequencies of the cavity are the same as
those of the FP resonator constituting the central part of the
resonator, as expected.

(19)



62 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JANUARY 1974

Let us now pass to a better approximation. Introduction of (18)
into (17) yields

2
in? Tel = — 7;"_> N 20
sin’ [(m+1)2e] (1 o (20)
One can write, from (20), in a first approxirqation,
2 2 \1/2
eg—*~—1~ﬁ). (21)
r{m + 1) we?

Introduction of (18) into (16), on account of (21), gives

In order to solve this equation let us replace 7, in the factor
(@ + 7o) by the value 7o’ obtained with the zero-order approxima-
tion. It is then an easy matter to find

e (m 4 1)t @3)
wet 4[2(a + ') +wo
The resonance condition becomes
(m +1)2x a
= 24
k= T Ga e T 2 (24)

where N = a?/Ad denotes the Fresnel number of the central part
of the resonator and

_ (m -+ 1=
T 20 4 wo + 2rd

Equation (24) or (25) together with (9) and (19) gives the
resonance condition; (1) and (3) furnish the mode patterns. When
the mirror aperture 2a becomes large with respect to w, and 7y,
these equations reduce to those of the FP resonator. An inspection
of the above equations indicates that our results can be expressed
in terms of nondimensional quantities by dividing each length by A.

%3

(25)

III. ConcLUsION

The results derived above were obtained with a procedure includ-
ing many limitations and approximations.

Recall that the procedure is valid for resonators having a rim
curvature p > d/2, so that a caustic surface exists. Moreover, the
approximations made in deriving our formulas, which require

and
T
(m+1)5e<<1 27)
put further limits to p:
2mA\2  2p 32N, 2
1 —_— — _ 1. 2
+<d><d<<[(m+1)2r]+ (28)

Finally, we recall that the matching conditions (10)-(12) cannot
be satisfied everywhere along the line of the matching with the
simple expressions (1) and (3). In particular, the field near the
mirrors seems to have a rather complicated pattern owing to the
finiteness of the mirrors [97, [107.

In spite of the number of simplifications, the treatment turns out
to work satisfactorily in a large range of values of the parameters.
An idea of the accuracy of the results can be given by a comparison
with the results obtained by numerically solving the integral equa-
tion of the open cavity. Fig. 2 shows the phase shift defined as
Ag = kd — gr for four modes, in the particular case a/n = 20,
d/\ = 100, plotted versus A/p. Solid lines refer to the present the-
ory. For the open resonator (dashed lines), the rim width has a
value I/X = 5. The curves for the values m = 0 and m = 1 are re-
ported from [8, fig. 117 (Note, however, that in that figure the scale
of phase shifts is affected by a misprint so that a correction factor
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10~ must be introduced ). The curves of the modes m = 2andm = 3
were evaluated by using a procedure described elsewhere [117.

Mode patterns for m = 0,1,2,3 are reported in Fig. 3, in the case
A/p = 0.01 (solid line). The radius of the curved mirrors corresponds
to a confocal geometry, which does not, however, give rise to the
minimum of the losses versus \/p, as can be seen from [7, fig. 11].
The central portion of the resonator corresponds to z/a < 1; the
rim extends from z/a = 1 to z/a = 1.25. The beam waist is wy =
3.99» and the value of 7y, where the matching is to be made, is
7o’ = 3.94 A for the first even mode and ry’ = 3.79 A for the first odd
mode. The dashed lines of Fig. 3 were obtained with the numerical
evaluation by means of the procedure described in [11]. The agree-
ment between theoretical and numerical results is quite good, in
spite of the fact that wy is not larger than X and that the open curved
mirrors have a dimension only a little larger than w,. Even better
agreement would be obtained for larger values of A/p.

These simple examples confirm the utility of the procedures of
neglecting the losses for a first insight in the behavior of open reso-
nators where the field is confined by a caustic surface.

Moreover, the knowledge of approximate expressions of the fields
may be the starting point for a more complete analysis also includ-
ing the losses of the resonator.
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Circularly Polarized Equalizer Networks

ROBERT D. WANSELOW, SENIOR MEMBER, IEEE, AND
DAVID A. TAGGART, MEMBER, IEEE

Abstract—Characteristics of the cross slot coupling aperture
applicable to circularly polarized equalizer networks is presented.
This coupling mechanism is analyzed and experimental results
indicate good agreement between theory and practice. Extension
of the single-cavity unit to multiple direct-coupled dual-mode
equalizer networks is also discussed.

INTRODUCTION

In recent years as microwave communications system require-
ments have become more sophisticated, the design of multiplexing
bandpass networks together with the necessary equalization eircuitry
hags attracted an increasing amount of attention. The choice of appli-
cable equalizer networks has usually relied upon either single-mode
cavities [13-[4]), using circulators or hybrids, or dual orthogonal
mode [5] circularly polarized cavity networks, In general, the single
dominant mode equalizer networks exhibit more dissipation loss,
and the achievable isolation is limited due to the inherent circuit
characteristics of the circulator or hybrid. Furthermore, with circu-
lators or hybrids the weight will increase and most likely will be
more expensive, especially if temperature compensation of the ferro-
magnetic material of circulators is required. In all cases the theory
of reflection-type commensurate transmission-line all-pass networks
has been utilized to analytically describe the behavior of these net-
works [6], [7].

This short paper describes an improved approach for realizing
circularly polarized equalizer networks whereby use of the cross is
employed instead of the more conventional circle or square-shaped
iris as the coupling mechanism between the main transmission line
and the appropriate cavity circuitry. The primary advantage of
cross aperture coupling is that the return loss or match is much
better than that exhibited by either the circle or square iris given
identical coupling. The VSWR for the circular or square aperture
can be significantly improved through the use of screw tuning in the
main line. However, this matching will restrict the allowable number
of cascaded equalizer units that can be tandem connected due to
the frequency sensitivity of the spacing between each tuning screw,
i.e., the reactive interaction effects. The inherent superior scattering
characteristic of the cross will additionally prove valuable when
utilized in multiple cascaded directional channel circular waveguide
filter networks.

In this short paper, application of existing theory for circularly
polerized single-cavity resonators is made with emphasis on the use
of cross slot coupling for realizing microwave equalizer networks.
Various properties of the cross are quantitatively defined. In addi-
tion, direct-coupled multiple-cavity equalizers are also discussed.
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Cross APERTURE COUPLING
A. General

If a pair of crossed slots couples energy into a cylindrical wave-
guide cavity, configured such that the dominant TEy® mode can be
orthogonally doubly degenerate, then the cavity supporting a reso-
nant circularly polarlzed wave can be coupled to the rectangular
waveguide TEy,” mode in such a manner that an all-pass single-
resonator equalizer circuit is realized. Fig. 1 denotes this circularly
polarized equalizer network with the appropriate dimensional param-
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i

CP equalizer using cross slot coupling.

Fig. 1.

eters. The transverse location « is unique to the operation of circu-
larly polarized equalizers in that only one location exists which
provides circular polarization (CP). In fact, a proper z position
allows the simultaneous achievement of minimum scattering with
good CP. The amount of coupling is controlled by both the length
and the width of the slots. The design of such circularly polarized
cavity structures has been considered for directional filters [8] with
circular hole coupling irises. Both the peak magnitude of the time
delay and the time delay response as a function of frequency are
determined by a single parameter, the external @ of the resonant
cavity, which for singly loaded equalizer cavities is twice that of
doubly terminated single-cavity filters [9].

B. Cross Location

The time delay response of the equalizer is completely specified
by the power couphng factor and the resonant frequency of the
cav1ty As denoted in [10, p. 2397, the power coupling coefficient
is related to the square of the magnitude of the transfer scattering
coefficient. Circular polarization will exist when the coupling to each
orthogonal mode is equal from which the cross location is defined as

A
z = 2 tan™! [j tan? ¢} . 1)
2a

ks

In general, the cross angle ¢ is set to about 45° with respect to the
transverse axis of the rectangular waveguide. However, this angle
is not eritical and can be easily compensated for by a slight adjust-
ment of the posxtlon of the slots. In addition, it should be noted
that as the angle ¢ is allowed to increase shghtly above 45°, the
optimum cross position will move a small distance toward the center
of the rectangular waveguide which, in turn, will permit larger
coupling values to exist by virtue of longer slots possible before the
proximity of the side wall interferes.

It is necessary to determine a proper z position to achieve a match
into the CP equalizer network. Fig. 2 shows the sensitivity of the
mateh to the = position for an equalizer with a center frequency of



