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IV. CONCLUSIONS

The effect of the width and the dielectric material of the non-
magnetic gap on the operation of latching stripline circulators has
been studied. Numerical results show that in the typical range of
design the external normalized radius and the bandwidth are slightly
affected by the gapwidth. Generally speaking the bandwidth de-
creases bychanging the dielectric constant of the ceramic ring from
that of the ferrite. The normalized external radius decreases by
decreasing the dielectric constant of the ceramic ring. The band-
widths nonsensitive tothevariations iney/ed up to thevalue2.
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Curved-Rim Open Resonators

0 .1 .2 .3 .4 .5 .6 .7 .8 A. CONSORTING

Normalized external radius zs for circulation as a function of
K/fifor R = 1.1 and different values Of.sf/ed. Abstract-Field configurations and resonant frequencies are

analytically derived for some low-loss modes of a’Fabry-Perot
(FP) open resonator having curved rims along the edges. Since the
low-loss modes are limited by a caustic surface, the problem can
be simply treated by neglecting the diffraction due to the finite
dimensions of the mirrors. The results are compared with those
obtained by numerically solving the integral equation of the open
cavity.

I. INTRODUCTION

As is well known, the losses of a class of open resonators are so
low that field configurations and resonant frequencies can be ob-
tained, with a good approximation, without taking into account the
effects of the diffraction due to the finite dimensions of the mirrors.
In general, this class includes those open cavities whose low-loss
modes are limited by a caustic surface [1]. Typical examples are
the curved stable resonators [1], [2], the so-called fla+roof reso-
nator [3], thequasi-corner resonator [4], andsome types of rimmed
resonators [5], [6].

Another type of cavity, where thelow-order modes are expected
to be represented by fields bounded by a caustic surface, is that
represented in Fig. 1 constituted by a Fabry–Perot (FP) resonator
having curved rims along the edges. In the present short paper,
mode configuration and resonances of it are determined by neglecting
the diffractional effects.

As usual, the problem is reduced to the investigation of the in-
finite-strip case. The curved-rim sections are assumed to join the
flat portion of themirrors continuously (Fig. 1).

II. THEORY

With reference to rectangular coordinates X,II,Z with the origin at
the center of the cavity, Fig. 1, the.problemis to find a solution of
the wave equation, for instance, the electric field E parallel to ~,
which satisfies the boundary conditions on the mirrors. We will

.1 .2 .3 .4 .5 .6 .7 L K/p

Thesplitting ratio2& = (~8- – Zs+)/Z~iraS a function of K/#
for R = 1.1 and different values ofq/@.
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proceed by choosing two different solutions satisfying the boundary
conditions in the central region ABCD, and in a lateral region,
BEFC, respectively, andthen bymatching them along anappropri-
ateline [3], [4], [6].

In thecentral portion of the cavity, a solution of thewaveequa-
tion, satisfying the boundary conditions on the walls, can rewritten

{

Cos (kzx)
E. = COSk,Z (1)

sin (Lx)

where

k.d =q~ (2)

and q is a very large odd integer. For low-order modes, which we
are interested in, k, is of the order of magnitude of the free-space
wavermmber lc, and therefore k. << k,. Moreover, k,a is of the order
of a multiple of 7r/2. It is to be expected that the presence of the
rim alters the value of ,%=,but not its order of magnitude.

Thefactorscos (kZx) and sin (kZZ) of (1) correspond to even and
odd modes, respectively.

The solution EZ of the wave equation in the region BEFC, satisfy-
ing Lhe boundary conditions at BE and FC (and having a caustic
surfacei nt hisregion), can belooked forinthe form of two Gaussian
beams with the axis coincident with BC, propagating in the dire~
tionez and —z, respectively, andhaving Blland CF as wavefronts.
In order to obtain low-loss modes it is necessary to utilize the
Gaussian beame of lowest order, so that EZ can be written as

[ ‘“1 ‘3)E1=A~exp (–r~/wZ)cos kz–~+z

(5)

It is also well known that in the region r < w the field of a Gaus-.
sian beam presents an oscillating behavior; the field becomes vanish-
ingly small when r > w. The liner(z) = w(z) represents the caustic.

The two fields E. and EZ must be matched along the line separat-
ing the two regions of validity of the two solutions (1) and (3).
Note that since the plane and curved mirrors are tangent to one
another, the two regions are not sharply limited by the line z = a.
Therefore, there is no physical reason for the matching to occur
along BC, as would happen if the niirrors were not tangent to one
another. The line of the matching, of equation r = rO (z ), is an
unknown of our problem.

The matching requires the following conditions to be fulfilled
along the line rO (z ):

[Ec]rqo(.) = [Et], =ro(z)

[~lr=ro(.)=[:lr=ro(z)

(10)

(11)

(12)

In general, these conditions cannot be satisfied everywhere along
the line of the matching with the simple expressions (1) and (3)
for E. and Ez, respectively. As an approximation we will require
that they are satisfied near the z axis. This is equivalent to approxi-
mating the line r = rO(z ) with the straight line r = rO (z = O) = TO.

In the same approximation, conditions (10) and (12) obviously
coincide. In thk case the quantities Q, w, and R appearing in (3)
can be replaced by their approximate expressions valid for small
values of z. For small values of z the matching conditions, on account
of (1) and (3), give for even modes

A=
cos [k. (a + ro) 1
exp [ —roz/woz]

(13)

(14)kc tan [k. (a + r,)] = ~

‘=ks[’+A(l-31 ‘o<wo ’15)

and analogous expressions for odd modes.
Equation (15 ) represents the resonance condition. It hss been

obtained from (12 ) by also recalling that wo > I and, consequently,
by neglecting terms of higher order with respect to the last term in
square parenthesis.

A comparison of (15 ) and (5) yields

()k=2+ l–r~ .
W02

(16)

Moreover [7], After some manipulation, by also using (16), (14) can be replaced

‘=wo[’+(~}l ‘=2”’k “) by cost [kc(a +n)] = 1 –flz. (17)
W02

‘=Z[1+E91
and

()@ = arctan Z .
uw@’J

(7)

(8)

Finally, w, is a constant (the beam waist) which is determined by
means of the condition that the mirror surfaces coincide with two
wavefronts. By requiring that for I z \ = d/2 the radius of curvature
I R I of the wavefront be equal to the radius p of the rim, one obtains
from (7)

()2_d2p 1/2

‘0–i7–
1! (9)

Recall that the existence of Gaussian beams requires W6>> h. It

appears from this equation that the caustic surface exists only if
P > d/2, ss is well known from the theory of curved-mirror open
remnators.

Since ksu is of the order of a multiple of r/2, it appears from (17)
that ro N w,. The solution of this equation, on account also of (14),
can be looked for in the form:

k.(a+r,) = (rn+l)~(l –c), rn=l),2. . . (18)

with O < e <<1. For odd modes one derives the same equation, but
with m odd. Equation (18) introduced into (16) allows us to derive
an approximate value r~’ of r“, by neglecting e with respect to unity
and r~ with respect to the mirror aperture a:

[ (H]~o,= W. ~ _ (m + 1)%2 w, 2 112

16 a“
(19)

This result implies that the second term in brackets be much
smaUer than unity, so that our results will be valid for low values
of m. If one introduces (19) into (15) it appears that in this approxi-
mation the resonance frequencies of the cavity are the same as
those of the FP resonator constituting the central part of the
resonator, as expected.
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Letusnow pssstoa better approximation. Introduction of (18)
into (17) yields

Onecanwrite, from (20), inafirst approximation,

2

()

rot Ilz

1–— .
‘—7r(?n+l) ~02

(20)

(21)

Introduction of (18) into (16), on account of (21), gives

In order to solve th~ equation let us replace r, in the factor
(cc+ro) bythevalue rO’obtained with thezero-order approxim&
tion. It is then an easy matter to find

l–r~.
(m + 1) ’?r%m’

W02 4[2(a+rd) +wo]’-
(23)

The resonance condition becomes

(rrz + 1 )%r ~2

kd=qr+ AN
(2a + w, + 2r0’ )’

(24)
.

where N. = as/Ad denotes the Fresnel number of the central part
of the resonator and

k= =
(m+l)~

2a +w0+2r0’”
(25)

Equation (24) or (25) together with (9) and (19) gives the
resonance condition; (1) and (3) furnish the mode patterns. When
the mirror aperture 2a becomes large with respect to WOand TO’,
these equations reduce to those of the FP resonator. An inspection
of the above equations indicates that our results can be expressed
in terms of nondimensional quantities bydhidlnge achlengthbyk.

III. CONCLUSION

The results derived above were obtained with a procedure includ-
ing many limitations and approximations.

Recall that the procedure is vdld for resonatom having a rim
curvature p > d/2, so that a caustic surface exists. Moreover, the

approxfiations retie in deriving our f ormulss, which require

Wo>x (26)

and

(?2+1); ,<<1

put further lid,s to p:

l+&)< ;<<[(fl,2=]+l.

(27)

(28)

Finally, we recall that the matching conditions (10 )– (12) cannot
be satisfied everywhere along the line of the matching with the
simple expressions (1) and (3). In particular, the field near the
mirrors seems to have a rather complicated pattern owing to the
finiteness of the mirrors [9], [10].

In spite of the number of simplifications, the treatment turns out
to work satisfactorily in a large range of values of the parameters.
An idea of the accuracy of the results can be given by a comparison
with the results obtained by numerically solving the integral equa-
tion of the open cavity. Fig. 2 shows the phase shift defined as
Aq = kd – q~ for four modes, in the particular case a/X = 20,
d/X = 100, plotted versus X/P. Solid lines refer to the present the-
ory. For the open resonator (dashed lines ), the rim width hae a
value Z/h = 5. The curves for the values m = O and m = 1 are re-
ported from [8, fig. 11] (Note, however, that in that figure the scale
of phase shifts is affected by a misprint so that a correction factor
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10-’ must be introduced). The’ curvw of the modes m = 2 and m = 3
were evaluated by using a procedure described elsewhere [11].

Mode patterns for m = 0,1,2,3 are reported in Fig. 3, in the case
X/P = 0.01 (solid line). The rcdius of the curved mirrors correeponde
to a confocal geometry, which does not, however, give rise to the
rniniium of the losses versus X/P, as can be seen from [7, fig. 11].
The central portion of the resonator corresponds to x/a ~ 1; the
rim extends from x/a = 1 to z/a = 1.25. The beam waist is wo =
3.99 x and the value of TO’, whe~e the matching is to be made, is
To’ = 3.94 X for the first even mode and rO’ = 3.79 h for the fist odd
mode. The dashed lines of Fig. 3 were obtained with the numerical
evaluation by means of the procedure described in [11]. The agree-
ment between theoretical and numerical results is quite good, in
spite of the fact that wo is not larger than x and that the open curved
mirrors have a dimension only a little larger than WO.Even better
agreement would be obtained for larger values of X/P.

These simple examples confirm the utility of the procedures of
neglecting the losses for a first insight in the behavior of open reso-
nators where the field k confined by a caustic surface.

Moreover, the knowledge of approximate expressions of the fields
may be the starting point for a more complete analysis also includ.
ing the losses of the resonator.
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Circularly Polarized Equalizer Networks

ROBERT D. WANSELOW, SENIOR MEMBER, IEEE, AND
DAVID A. TAGGART, MEMBER, IEEE

.4bsfract—Characteristics of the cross slot coupling aperture
applicable to circularly polarized equalizer networks is presented.
This coupling mechanism is analyzed and experimental results

indicate good agreement between theorj and practice. Extension

of’ the single-cavity unit to multiple direct-coupled dual-mode
equalizer networks is also discussed.

INTRODUCTION

In recent years as microwave communications system require-
ments have become more sophkticated, the design of multiplexing
banclpsss networks together with the necessary equalization circuitry
has attracted an increasing amount of attention. The choice of appli-
cable equalizer networks has usually relied upon either single-mode
cavities [1 ]–[4], using circulators or hybrids, or dual orthogonal
mode [5] circularly polarized cavity networks. In general, the single
dominant mode equalizer networks exhibit more dissipation loss,
and the achievable isolation is limited due to the inherent circuit
characteristics of the circulator or hybrid. Furthermore, with circu-
lators or hybrids the weight will increase and most likely will be
more expensive, especially if temperature compensation of the femo-
magnetic material of circulators is required. In all cases the theory
of reflection-type commensurate transmission-line all-pass networks
has been utilized to analytically describe the behavior of these net-
works [6], [73.

This short paper describes an improved approach for realizing
circularly polarized equalizer networks whereby use of the cross is
employed instead of the more conventional circle or square-shaped
iris as the coupling mechanism between the main transmission line
and the appropriate cavity circuitry. The primary advantage of
cross aperture coupling is that the return loss or match is much
better than that exhibited by either the circle or square iris given
identical coupling. The VSWR for the circular or square aperture
can be significantly improved through the use of screw tuning in the
main line. However, this matching will restrict, the allowable numbei
of cascaded equalizer -units that can be tandem connected due to
the frequency sensitivity of the spacing between each tuning screw,
i.e., the reactive interaction eff eits. The inherent superior scattering
characteristic of the cross will additionally prove valuable when
utilized in multiple cascaded dkectional channel circular waveguide
filter networks.

Iu th~ short paper, application of existing theory for circularly
polarized single-cavity resonators is made with emphasis on the use
of cross slot coupling for realizing microwave equalizer networks.
Various properties of the cross are quantitatively defined. In addl-
tion, direct-coupled multiple-cavity equalizers are also discussed.
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CROSS APERTURE COUPLING

A. General

If a pair of crossed slots couples energy into a cylindrical wave-
guide cavity, configured such that the dominant TEIIO mode can be
orthogonally doubly degenerate, then the cavity supporting a reso-
nant circularly polarized wave can be coupled to the rectangular
waveguide TE@ mode in such a manner that an all-pass single-
resonator equalizer circuit is realized. Fig. 1 denotes this circularly
polarized equalizer network with the appropriate dimensional param-
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Fig. 1. CP equalizer using cross slot coupling.

eters. The transverse location z is unique to the operation of circw
larly polarized equalizers in that only one location exists which
provides circular polarization (CP ). In fact, a proper x position
allows the simultaneous achievement of minimum scattering with
good CP. The amount of coupling is controlled by both the length
and the width of the slots. The design of such circularly polarized
cavity structures has been considered for directional filters [8] with
circular hole coupling irises. Both the peak magnitude of the time
delay and the time delay response as a function of frequency are
determined by a single parameter, the external Q of the resonant
c~vity, which for singly loaded equalizer cavities is twice that of

doubly terminated single-cavity filters [9].

B. Crow Locatian

The time delay response of the equalizer is completely speeified
by the power coupling factor and the resonant frequency of the
cavity. As denoted in [10, p. 239], the power coupling coefficient
is related to the square of the magnitude of the transfer scattering
coefficient. Circular polarization will exist when the coupling to each
orthogonal mode is equal from which the cross location is defined as

(1)

In general, the cross angle #1is set to about 45° with respect to the
transverse axis of the rectangular waveguide. However, thk angle
is not critical and can be easily compensated for by a slight adjust-
ment of the x position of the slots. In addition, it should be noted
that as the angle @ is allowed to increase slightly above 45°, the
optimum cross position will move a small distance toward the center
of the rectangular waveguide which, in turn, will permit larger
coupling values to exist by virtue of longer slots possible before the
protilty of the side wall interferes.

It is necessary to determine a proper x position to achieve a match
into the CP equalizer network. Fig. 2 shows the sensitivity of the
match to the z position for an equalizer with a center frequency of


